Editorial: Evidence-based Guidelines for Avoiding Reference List Errors in Manuscripts Submitted to Journals for Review for Publication

Anthony J. Onwuegbuzie and Eunjin Hwang
Sam Houston State University

Rebecca K. Frels
Lamar University

John R. Slate
Sam Houston State University

In a previous editorial, Onwuegbuzie, Frels, and Slate (2010) determined that citation errors (representing a failure "to make certain that each source referenced appears in both places [text and reference list] and that the text citation and reference list entry are identical in spelling of author names and year"); American Psychological Association [APA], 2010, p. 174) were committed by 91.8% of the authors who submitted manuscripts for review for publication to Research in the Schools. In a follow-up editorial, Onwuegbuzie, Combs, Frels, and Slate (2011) similarly documented a citation error rate of 88.6% among manuscripts submitted for review for publication to Educational Researcher, the highest ranked educational journal. Thus, citation errors currently represent the most prevalent APA error. However, to date, no researcher has examined APA style errors made in reference lists in manuscripts submitted to journals. In this editorial, we provide evidence-based guidelines to help authors avoid committing style errors in reference lists. Specifically, we present the results of a mixed analysis of 131 manuscripts submitted to Research in the Schools over a 6-year period, which revealed that authors committed more than 12 reference list errors per manuscript, on average (M = 12.83, SD = 7.25). Further, a total of 466 unique reference list errors were identified, which yielded 14 reference list error themes. Consequently, we provide an evidence-based practice exercise for reducing reference list errors. We hope that the tools and strategies we provide will help authors to prevent reference list errors in the future.

Reference lists appear in every scholarly work, regardless of genre (e.g., book, journal article, presentation) and regardless of writing style. In a previous editorial, Onwuegbuzie, Combs, Slate, and Frels (2010) discussed the findings of Onwuegbuzie and Combs (2009), who documented the 60 most common American Psychological Association (APA) errors occurring in 110 manuscripts that were submitted for review for publication to Research in the School (RITS), a nationally refereed journal and the flagship journal of the Mid-South Educational Research Association, over a 6-year period. Of the 60 APA errors that were identified, the incorrect use of numbers was the most common error—occurring in 57.3% of the manuscripts, which, as concluded by Onwuegbuzie et al. (2010), represents an extremely large effect size. In a subsequent editorial, Onwuegbuzie, Combs, Frels, and Slate (2011) similarly documented a citation error rate of 88.6% among manuscripts submitted for review for publication to RITS. In a follow-up editorial, Onwuegbuzie, Combs, Frels, and Slate (2011) similarly documented a citation error rate of 88.6% among manuscripts submitted for review for publication to Educational Researcher, the highest ranked educational journal. Thus, citation errors currently represent the most prevalent APA error. However, to date, no researcher has examined APA style errors made in reference lists in manuscripts submitted to journals. In this editorial, we provide evidence-based guidelines to help authors avoid committing style errors in reference lists. Specifically, we present the results of a mixed analysis of 131 manuscripts submitted to Research in the Schools over a 6-year period, which revealed that authors committed more than 12 reference list errors per manuscript, on average (M = 12.83, SD = 7.25). Further, a total of 466 unique reference list errors were identified, which yielded 14 reference list error themes. Consequently, we provide an evidence-based practice exercise for reducing reference list errors. We hope that the tools and strategies we provide will help authors to prevent reference list errors in the future.

Correspondence concerning this article should be addressed to Anthony J. Onwuegbuzie, Department of Educational Leadership and Counseling, Box 2119, Sam Houston State University, Huntsville, TX 77341-2119
E-Mail: tonyonwuegbuzie@aol.com
Reference, the highest ranked educational journal, and one of the flagship journals of the American Educational Research Association. Thus, citation errors currently represent the most prevalent APA error.

However, none of these authors investigated APA errors that appear in the reference list of manuscripts. Interestingly, over the last 4 decades, several researchers have investigated the accuracy of reference lists in published articles across numerous fields and disciplines (e.g., business, economics, social work, psychology, medicine, library information science) by comparing each reference contained in the reference list to the original work (e.g., Adhikari & Bhandari, 2011; de Lacey, Record, & Wade, 1985; Doms, 1988; Eichorn & Yankauer, 1987; Faunce & Job, 2001; Gatten, 2010; Gosling, Cameron, & Gibbons, 2004; Hermon & Metoyer-Duran, 1992; Holt, Siebers, Suder, Loan, & Jeffery, 2000; Kristof, 1997; Ngan Kee, Roach, & Lau, 1997; Nishina, Asano, Mikawa, Maekawa, & Obara, 1995; O'Connor, 2002; O'Connor & Kristof, 2001; Siebers, 2000; Siebers & Holt, 2000; Spivey & Wilks, 2004; White, 1987). Disturbingly, many of these researchers have documented very high rates of errors, despite the fact that, presumably, these articles had undergone a copyediting process. For example, Faunce and Job (2001) examined the accuracy in reference lists of five experimental psychology journals (Journal of Experimental Psychology: Animal Behavior Processes; Journal of Experimental Psychology: Applied; Journal of Experimental Psychology: Learning, Memory, and Cognition; Journal of Experimental Psychology: Human Perception and Performance; and Journal of Experimental Psychology: General). The accuracy of each reference was assessed by comparing the selected reference with the original work (i.e., the primary source) using the six standard elements of bibliographic citation, namely, (a) authors (e.g., the correct order, initials, spelling, and inclusion of all authors); (b) year of publication; (c) article title; (d) journal title; (e) volume number; and (f) page numbers. Of the 355 randomly selected articles examined, 112 (31.5%) had an error in at least one component of the reference, with 94 (26%) containing one error and 18 (5%) containing errors in at least two components of the reference. The most common errors pertained to reference list errors in the article title (15%) and the authors (12%), followed, respectively, by reference list errors in the page numbers (6%), volume number (3%), and journal title (2%).

Gatten (2010) examined 217 articles across the three sample fashion journals. Each reference was verified against the source article for accuracy in six fields: article title, author name(s), journal title, pagination, volume, and year. Gatten reported that 107 articles (49.3%) contained references with errors, yielding a combined total of 142 errors. Errors in the title were the most common (48 errors in 31 references), followed by the errors pertaining to the author (38 errors in 28 references), pagination (28 errors in 25 references), issue (11 errors in nine references), journal name (nine errors in six references), volume (five errors in five references), and year (three errors in three references). In a much earlier study, White (1987) documented the accuracy of articles appearing in reference lists of all articles published in the Journal of the American Society for Information Science (originally entitled American Documentation) and the Journal of Counseling and Development (originally entitled Personal and Guidance Journal) every 10 years (starting in 1955-1956) over a 40-year period, yielding 2,933 reference list entries. White reported that the proportion of reference list errors with one or more errors across the two journals was 46.9% for the 1980s data, 42.6% for the 1970s data, 42.1% for the 1960s data, and 37.1% for the 1950s data.

O’Connor and Kristof (2001) assessed 4,851 references contained in 93 articles that were published in the last issue in 1998 in one of 12 business and economic journals. These researchers documented that an average of 41.7% of references contained at least one error, with the majority of errors pertaining to authors’ names, followed by errors in pagination, followed by errors in article or chapter titles. Most recently, Adhikari and Bhandari (2011), who examined a random selection of 60 references in articles published in the Internet Journal of Medical Update, observed that 10% of these references were inaccurate. In contrast, Spivey and Wilks (2004), who examined 500 randomly selected references from five social work journals (100 references from each journal) for the year 2000, ascertained that 206 references (41.2%) contained at least one error.

Onwuegbuzie (2012), who conducted a meta-analysis of studies of the accuracy of reference lists in published articles, documented reference list inaccuracy rates that ranged from 4.1% for articles published in the first issue published in March 1999 of the New England Journal of Medicine (i.e., Siebers & Holt, 2000) to 66.7% in the British Journal of Obstetrics and Gynaecology (i.e., Roach, Lau, & Ngan Kee, 1997). However, even a reference list accuracy rate of 4.1% is unacceptable. In fact, with approximately 1.4 million journal articles currently being published each year—not to mention the number of other published works (e.g., books)—
even one reference list inaccuracy per article would yield 1.4 million inaccurate references per year!

Considering these extremely high error rates, it is likely that manuscripts submitted to journals that have not yet been professionally copyedited in general and manuscripts that end up being rejected in particular contain even higher error rates in reference lists. However, to date, no researcher has examined the accuracy of reference lists of manuscripts initially submitted to journals. Moreover, as yet, no researcher has examined the extent to which reference lists in works—whether published or unpublished—conform to the style guides of the respective journals. To this end, Onwuegbuzie and Hwang (2012) examined the frequency and characteristics of APA errors committed in the reference lists of manuscripts initially submitted to a nationally refereed journal, as well as the relationships between reference list errors and selected manuscript variables (e.g., number of authors, editor decision). The reference list errors investigated by Onwuegbuzie and Hwang (2012) were different than were the errors examined in the aforementioned studies because whereas the latter set of researchers examined the accuracy rate of reference lists of published articles with respect to the original works, Onwuegbuzie and Hwang (2012) examined the APA error rate in reference lists of manuscripts submitted to a journal (i.e., unpublished articles). Thus, in this editorial, we summarize and extend their findings.

Method

Using mixed research techniques, Onwuegbuzie and Hwang (2012) examined 131 manuscripts submitted to RITS over a 6-year period (i.e., 2004-2010). These manuscripts represented approximately 60% of all manuscripts submitted to this journal over this time frame, which made their findings generalizable at the very least to the population of manuscripts submitted to RITS. The year 2004 was selected by Onwuegbuzie and Hwang because it represented 3 years after the fifth edition of the Publication Manual was introduced—a sufficient time frame for users of the fourth edition to become familiar with the fifth edition of the Publication Manual of APA. Further, they selected 2010 as the end point because it represents the last year of the fifth edition and the introduction of the sixth edition.

Onwuegbuzie and Hwang (2012) scrutinized the reference lists of all submitted manuscripts and carefully documented every reference list error committed by these 131 sets of authors. Also, they collected the following information: the topic of the manuscript, genre of the manuscript, number of authors per manuscript, gender of the primary author, the geographical location of the primary author’s affiliation, and the Carnegie Classification (The Carnegie Foundation for the Advancement of Teaching, n.d.) that characterized each primary author’s academic institution. Further, they documented every APA error in the reference list of these 131 manuscripts.

Onwuegbuzie and Hwang (2012) adopted a dialectic pluralist approach (i.e., maintaining the stance that incorporating multiple epistemological perspectives within the same inquiry represents a value-added strategy; Johnson, 2012), which led to their using mixed analysis techniques (i.e., a sequential mixed analysis; Onwuegbuzie & Combs, 2010) to examine the prevalence and characteristics of reference list errors in the 131 manuscripts. Specifically, they used a four-stage sequential mixed analysis procedure. In addition, we added a fifth stage—making the whole analysis process a five-stage sequential mixed analysis procedure. Therefore, the following sections describe the first four stages of analysis performed by Onwuegbuzie and Hwang (2012) and the fifth stage expanding the results.

Stage 1 Analysis

The first stage of the sequential mixed analysis involved a classical content analysis (Berelson, 1952; see also Leech & Onwuegbuzie, 2007, 2008, 2011) of the 131 manuscripts to determine the number of unique reference list errors. From this analysis, the prevalence of each of these reference list errors was determined. Also, the total number of reference list errors per manuscript was identified.

Stage 2 Analysis

Once all the reference list errors had been identified, the second stage occurred. This stage involved conducting a constant comparison analysis (Glaser & Strauss, 1967) of the reference list errors to determine the number of themes underlying them. These themes were extracted a priori (Constas, 1992).

Stage 3 Analysis

The third stage involved converting the reference list error themes (i.e., qualitative) that were extracted in the first stage to numerical codes (i.e., quantitative), a technique called quantitizing by mixed researchers (Tashakkori & Teddlie, 1998). Specifically, the reference list error themes were converted to numeric data by assigning a “1” if the manuscript contained one or more reference list error errors and a “0” if the manuscript did not contain any reference list error errors that were classified under that theme (Onwuegbuzie, 2003; Onwuegbuzie & Teddlie, 2003)—leading to the creation of an “inter-respondent matrix” (i.e., manuscript x reference list
error theme matrix) that comprised a combination of 0s and 1s (Onwuegbuzie, 2003, p. 396). This inter-respondent matrix was utilized to conduct a principal component analysis to determine the underlying structure of the reference list error themes by transforming it to a matrix of bivariate associations that represented tetrachoric correlation coefficients to take into account the fact that the reference list error themes had been quantitized to dichotomous data (i.e., “0” vs. “1”). As noted by Onwuegbuzie et al. (2007), tetrachoric correlation coefficients are appropriate to use when examining the association between two (artificial) dichotomous variables. Further, an orthogonal (i.e., varimax) rotation was employed, using the following three procedures to determine an appropriate number of factors to retain: eigenvalue-greater-than-one rule (i.e., K1; Kaiser, 1958), scree test (representing a plot of eigenvalues against the factors in descending order; Cattell, 1966; Zwick & Velicer, 1986), and a parallel analysis (involving extracting eigenvalues from random data sets that parallel the actual data set with respect to the sample size and number of variables; Thompson, 2004; Zwick & Velicer, 1982, 1986). These extracted factors served as meta-themes (Onwuegbuzie, 2003) such that each meta-theme contained one or more of the reference list error themes. As outlined by Onwuegbuzie (2003), the trace, or proportion of variance explained by each factor after rotation, represented an effect size index for each meta-theme. Using Constan's (1992) typology, by determining the hierarchical relationship among the themes, the verification component of categorization was empirical, technical, and rational.

Stage 4 Analysis

The fourth stage involved a latent class analysis that was utilized to determine the number of clusters (i.e., latent classes) underlying the reference list error themes. The latent class analysis was conducted under the assumption that a specific number of unique reference list error themes prevailed, and that manuscripts could be classified into a small number of distinct clusters known as latent classes based on their profiles of reference list errors, such that each manuscript belonged to only one cluster. This latent class analysis represented quantitizing of the data (i.e., converting numeric data into [qualitative] narrative profiles; Tashakkori & Teddlie, 1998).

Stage 5 Analysis

In our added fifth stage, the inter-respondent matrix was utilized to examine the relationship between reference list error themes and an array of variables. In particular, we conducted the following analyses: (a) a correlation analysis to investigate the relationships between the total number of reference list errors and the number of citation errors, gender of the lead author, number of authors, length of manuscript, and size of institution of the lead author; (b) an independent samples t test to compare manuscripts that were accepted to RITS and to manuscripts that were not accepted (i.e., revise and resubmit, or reject) to RITS with respect to the total number of reference list errors; and (c) a canonical correlation analysis to investigate the multivariate relationship between the reference list error themes and selected demographic variables (e.g., number of authors, length of manuscript).

Results

Stage 1 Findings

The classical content analysis (Berelson, 1952) led to Onwuegbuzie and Hwang (2012) identifying a total of 1,681 reference list errors across the 131 manuscripts, which represented more than 12 reference list errors per manuscript, on average (M = 12.83, SD = 7.25). The number of unique reference list errors per manuscript ranged from 1 to 36, with 84.0% of manuscripts containing more than five unique reference list errors, 56.5% of manuscripts containing more than 10 unique reference list errors, and 15.3% of manuscripts containing more than 20 unique reference list errors. The classical content analysis also led to the identification of a total of 466 unique reference list errors that were identified across these 131 manuscripts. Further, this analysis revealed that the prevalence of each of these reference list errors ranged from 1 (0.75%) to 102 (76.7%).

Because of the number of unique reference list errors identified (i.e., n = 466), a decision was made that an error was significantly common when it occurred a minimum of eight times. The cut-point of eight was used because it represented an endorsement rate of 6%, which translated to a moderate effect size, using Cohen’s (1988, pp. 180-183) non-linear arcsine transformation criteria. Interestingly, a total of 50 reference list errors yielded endorsement rates of eight or greater. Table 1 presents these 50 most prevalent reference list errors documented by Onwuegbuzie and Hwang (2012).

Stage 2 Findings

A constant comparison analysis of these 466 reference list errors yielded the following 14 reference list error themes: (a) General errors; (b) Reference heading, (c) Names of authors, (d) Publication year/date, (e) Title of work, (f) Publisher information, (g) Source of journal/periodical, (h) Source of authored book, (i) Source of edited book,
(j) Source of website, (k) Source of paper presentation, (l) Source of dissertation/thesis, (m) Source of newspaper article, and (n) Source of government document. Table 2 presents descriptive statistics regarding the number of reference list errors for each of the 14 citation error themes. It can be seen from this table that reference list errors associated with the Source of journal/periodical represented the most prevalent errors, followed by reference list errors associated with Names of authors.

Stage 3 Findings

Pertaining to the number of factors underlying the 14 emergent reference list error themes, the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was greater than .5 (i.e., KMO = .55) and Bartlett’s test of sphericity was statistically significant ($X^2_{[91]} = 133.09, p = .003$), which justified the principal component analysis. Both the eigenvalue-greater-than-one rule (i.e., K1; Kaiser, 1958) and scree test indicated that four factors (i.e., meta-themes) be retained. A parallel analysis verified the K1 and scree test (Zwick & Velicer, 1982, 1986) for the current data of 131 manuscripts and 14 variables (i.e., reference list error themes). In addition, a series of (i.e., $n = 1,000$) random data matrices of size 131 x 14 was generated, and eigenvalues were computed for the correlation matrices for the original data and for each of the 1,000 random data sets. Next, the eigenvalues derived from the actual data were compared to the eigenvalues derived from the random data in order to identify the number of components that accounted for more variance than did the components derived from random data. Consistent with the K1 and scree test, the parallel analysis suggested retaining four factors.

Table 3 presents this four-factor solution. Using a cutoff correlation of 0.3, which has been recommended by Lambert and Durand (1975) as an acceptable lower bound for pattern/structure coefficients, it can be seen from Table 3 that five reference list error themes had pattern/structure coefficients with large effect sizes on the first factor: (a) Source of website, (b) Source of journal/periodical, (c) Publication year/date, (d) names of authors, and (e) Title of work. In addition, the following three reference list error themes had pattern/structure coefficients with large effect sizes on the second factor: (a) Source of edited book, (b) Source of authored book, and (c) Publisher information. Also, the following four reference list error themes had pattern/structure coefficients with large effect sizes on the third factor: (a) Source of newspaper article, (b) Reference heading, (c) Source of dissertation/thesis, and (d) Source of paper presentation. Two reference list error themes emerged that had pattern/structure coefficients with large effect sizes on the fourth factor: (a) Source of government document and (b) General errors. The first meta-theme (i.e., Factor 1) was labeled Author, Year, Journal, Title, and Website and explained 10.45% of the total variance. The second meta-theme (i.e., Factor 2) was labeled Book and Publisher and explained 11.35% of the total variance; the third meta-theme (i.e., Factor 3) was labeled: Heading and Non-Journal Sources and explained 10.60 of the total variance; and the fourth meta-theme (i.e., Factor 4) was labeled Government and Miscellaneous Errors explained 9.31% of the total variance. These four meta-themes combined accounted for 42.70% of the total variance, which represents a large effect size (Henson, Capraro, & Capraro, 2004; Henson & Roberts, 2006).

The manifest effect size—(i.e., actual reference list error rate per meta-theme) associated with the four meta-themes was as follows: (a) Author, Year, Journal, and Website (97.7%); (b) Book and Publisher (84.0%); (c) Heading and Non-Journal Sources (54.2%); and (d) Government and Miscellaneous Errors (57.3%). Figure 1 displays the thematic structure (i.e., relationships among the reference list error themes and the reference list error meta-themes), including the manifest effect sizes and latent effect sizes. This figure represents what Onwuegbuzie and Dickinson (2008) referred to as a crossover visual representation, which involves integrating both quantitative and qualitative findings within the same display.
Table 1

Stage 1 Findings: The 50 Most Prevalent Reference List Errors

<table>
<thead>
<tr>
<th>Reference List Error</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial (issue) numbers presented when the page numbers in each volume are continuous</td>
<td>102</td>
</tr>
<tr>
<td>Comma not presented to separate two authors</td>
<td>56</td>
</tr>
<tr>
<td>Superscripts inappropriately used when providing edition number</td>
<td>53</td>
</tr>
<tr>
<td>Space not presented between initials of each author</td>
<td>49</td>
</tr>
<tr>
<td>Period not presented after the author’s name (e.g., an organization) and before the publication year</td>
<td>37</td>
</tr>
<tr>
<td>Website inappropriately underlined</td>
<td>34</td>
</tr>
<tr>
<td>Month not given for a paper presentation</td>
<td>31</td>
</tr>
<tr>
<td>"Publications" or “Publications Inc" inappropriately presented when listing the publisher</td>
<td>30</td>
</tr>
<tr>
<td>Reference list not double spaced</td>
<td>28</td>
</tr>
<tr>
<td>Citations not presented in alphabetical order</td>
<td>27</td>
</tr>
<tr>
<td>Title of journal article inappropriately capitalized</td>
<td>27</td>
</tr>
<tr>
<td>Comma not presented after retrieval year of internal source</td>
<td>25</td>
</tr>
<tr>
<td>Volume number not italicized</td>
<td>24</td>
</tr>
<tr>
<td>"Inc" inappropriately presented when listing the publisher</td>
<td>21</td>
</tr>
<tr>
<td>Title of book inappropriately capitalized</td>
<td>20</td>
</tr>
<tr>
<td>"&" not used to separate the last two authors</td>
<td>18</td>
</tr>
<tr>
<td>Reference heading is bolded</td>
<td>18</td>
</tr>
<tr>
<td>Retrieval date not provided for web-based citations</td>
<td>18</td>
</tr>
<tr>
<td>First letter of the second-part of the title not capitalized</td>
<td>18</td>
</tr>
<tr>
<td>Title of edited books inappropriately capitalized</td>
<td>17</td>
</tr>
<tr>
<td>Title of journal not italicized</td>
<td>16</td>
</tr>
<tr>
<td>Space not presented to separate initials of each editor of an edited book</td>
<td>15</td>
</tr>
<tr>
<td>"And" instead of “&” to separate the last two authors</td>
<td>14</td>
</tr>
<tr>
<td>City, state, and/or publisher not always provided</td>
<td>14</td>
</tr>
<tr>
<td>Title of book not always italicized</td>
<td>14</td>
</tr>
<tr>
<td>Reference List Error</td>
<td>Frequency¹</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Period inappropriately appears after the numbers of ERIC</td>
<td>14</td>
</tr>
<tr>
<td>Page number of book chapters not presented after the title of the book</td>
<td>12</td>
</tr>
<tr>
<td>Space not presented between “pp “ and the page number</td>
<td>12</td>
</tr>
<tr>
<td>Page number of journal articles not presented</td>
<td>12</td>
</tr>
<tr>
<td>Initials of all authors not presented</td>
<td>11</td>
</tr>
<tr>
<td>State pertaining to the publisher not abbreviated</td>
<td>11</td>
</tr>
<tr>
<td>Reference heading represented by all uppercase text</td>
<td>11</td>
</tr>
<tr>
<td>Serial number not presented when discontinuous when the page numbers in each volume are not continuous</td>
<td>11</td>
</tr>
<tr>
<td>Volume number of journal article not provided</td>
<td>11</td>
</tr>
<tr>
<td>Comma not presented to separate the last two authors of a reference (when more than two authors)</td>
<td>10</td>
</tr>
<tr>
<td>Period not presented after an author’s initial</td>
<td>10</td>
</tr>
<tr>
<td>Volume number of journal (periodicals) not italicized</td>
<td>10</td>
</tr>
<tr>
<td>Abbreviation (of authors) inappropriately included</td>
<td>9</td>
</tr>
<tr>
<td>Citations not presented in chronological order</td>
<td>9</td>
</tr>
<tr>
<td>Title of paper presentation not italicized</td>
<td>9</td>
</tr>
<tr>
<td>Period inappropriately presented at the end of the reference (e.g., the reference ends with a website address)</td>
<td>9</td>
</tr>
<tr>
<td>Title of edited book not italicized</td>
<td>9</td>
</tr>
<tr>
<td>Title of journal article inappropriately italicized</td>
<td>9</td>
</tr>
<tr>
<td>Period not presented at the end of reference</td>
<td>8</td>
</tr>
<tr>
<td>Reference list does not begin on a separate page</td>
<td>8</td>
</tr>
<tr>
<td>Comma inappropriately appear between initials of some authors</td>
<td>8</td>
</tr>
<tr>
<td>State of publisher not provided</td>
<td>8</td>
</tr>
<tr>
<td>"And" instead of “&” used to separate the editors of edited books</td>
<td>8</td>
</tr>
<tr>
<td>Space inappropriately appear between six numbers of an ERIC</td>
<td>8</td>
</tr>
<tr>
<td>Space inappropriately appear between volume number and series number of a periodical</td>
<td>8</td>
</tr>
</tbody>
</table>

¹ Frequencies between 8 and 21 represent moderate effect sizes; frequencies greater than 22 represent large effect sizes, using Cohen’s (1988, pp. 180-183) non-linear arcsine transformation criteria.
Table 2

Stage 2 Findings: Prevalence Rates of Themes Emerging from Reference List Errors for Manuscripts Submitted to Research in the Schools

<table>
<thead>
<tr>
<th>Reference List Error Theme</th>
<th>Total Number of Unique Reference List Errors Contained in Theme</th>
<th>Total Number of Reference List Errors Contained in Theme</th>
<th>Average incidence of reference list errors per manuscript (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of journal/periodical</td>
<td>91</td>
<td>335</td>
<td>92.4</td>
</tr>
<tr>
<td>Names of authors</td>
<td>53</td>
<td>333</td>
<td>88.5</td>
</tr>
<tr>
<td>Source of edited book</td>
<td>55</td>
<td>191</td>
<td>64.1</td>
</tr>
<tr>
<td>Publisher information</td>
<td>46</td>
<td>146</td>
<td>61.8</td>
</tr>
<tr>
<td>Title of work</td>
<td>35</td>
<td>108</td>
<td>52.7</td>
</tr>
<tr>
<td>Source of website</td>
<td>25</td>
<td>120</td>
<td>51.1</td>
</tr>
<tr>
<td>General errors</td>
<td>32</td>
<td>110</td>
<td>48.9</td>
</tr>
<tr>
<td>Source of authored book</td>
<td>31</td>
<td>94</td>
<td>48.1</td>
</tr>
<tr>
<td>Source of paper presentation</td>
<td>30</td>
<td>92</td>
<td>35.9</td>
</tr>
<tr>
<td>Source of government document</td>
<td>23</td>
<td>52</td>
<td>22.9</td>
</tr>
<tr>
<td>Publication year/date</td>
<td>19</td>
<td>38</td>
<td>22.1</td>
</tr>
<tr>
<td>Reference heading</td>
<td>7</td>
<td>39</td>
<td>18.3</td>
</tr>
<tr>
<td>Source of dissertation/thesis</td>
<td>15</td>
<td>19</td>
<td>10.7</td>
</tr>
<tr>
<td>Source of newspaper article</td>
<td>4</td>
<td>4</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Table 3

Stage 3 Findings: Summary of Themes and Factor Pattern/Structure Coefficients from Principal Component Analysis (Varimax): Four-Factor Solution

<table>
<thead>
<tr>
<th>Theme</th>
<th>Factor Coefficients¹</th>
<th>Communality Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Source of website</td>
<td>.65</td>
<td>-.15</td>
</tr>
<tr>
<td>Source of journal/periodical</td>
<td>.56</td>
<td>.06</td>
</tr>
<tr>
<td>Publication year/date</td>
<td>.55</td>
<td>-.02</td>
</tr>
<tr>
<td>Names of authors</td>
<td>.48</td>
<td>.24</td>
</tr>
<tr>
<td>Title of work</td>
<td>.40</td>
<td>.20</td>
</tr>
<tr>
<td>Source of edited book</td>
<td>-.03</td>
<td>.80</td>
</tr>
<tr>
<td>Source of authored book</td>
<td>.04</td>
<td>.88</td>
</tr>
<tr>
<td>Publisher information</td>
<td>.25</td>
<td>.53</td>
</tr>
<tr>
<td>Source of newspaper article</td>
<td>-.05</td>
<td>-.03</td>
</tr>
<tr>
<td>Reference heading</td>
<td>-.11</td>
<td>-.02</td>
</tr>
<tr>
<td>Source of dissertation/thesis</td>
<td>.16</td>
<td>.27</td>
</tr>
<tr>
<td>Source of paper presentation</td>
<td>.22</td>
<td>.11</td>
</tr>
<tr>
<td>Source of government document</td>
<td>.16</td>
<td>.04</td>
</tr>
<tr>
<td>General error</td>
<td>.06</td>
<td>-.05</td>
</tr>
<tr>
<td>Trace</td>
<td>1.60</td>
<td>1.59</td>
</tr>
<tr>
<td>% variance explained</td>
<td>11.45</td>
<td>11.35</td>
</tr>
</tbody>
</table>

¹Coefficients in bold represent pattern/structure coefficients with the largest effect size within each theme using a cut-off value of 0.3 recommended by Lambert and Durand (1975).
Figure 1. Stage 3 Findings: Thematic structure pertaining to reference list error themes and meta-themes.
Stage 4 Findings
A latent class analysis to ascertain the smallest number of clusters (i.e., latent classes) that accounts for all the associations among select reference list error themes prevailed, and that manuscripts could be classified into a small number of distinct clusters known as latent classes based on their profiles of reference list errors, such that each manuscript belonged to only one cluster. Onwuegbuzie and Hwang (2012) conducted the latent class analysis on the six most common error themes because these were the themes that involved the majority of authors (i.e., > 50%; cf. Table 2)—specifically, Names of authors, Publisher information, Source of edited book, Source of journal/periodical, Source of website, and Title of work.

The latent class analysis of the six reference list error themes revealed a two-cluster solution ($L^2 = 51.45, df = 50, p = .42, \text{Bootstrap } p = .11$). Figure 2 displays these two distinct groups of manuscripts. It can be seen from Figure 2 that Cluster 1 (comprising 57.1% of manuscripts) was relatively high with respect to all six reference list error themes, whereas Cluster 2 (comprising 42.9% of manuscripts) was high on Names of authors and Source of journals/periodicals but relatively low on the remaining four reference list error themes. Also, it can be seen from Figure 2 that Publisher information (Wald = 8.69, $p = .003, R^2 = 49.01\%$), Source of edited book (Wald = 8.58, $p = .003, R^2 = 16.49\%$), and Title of work (Wald = 7.10, $p = .008, R^2 = 12.38\%$) statistically significantly discriminated the two clusters, whereas Names of authors (Wald = 3.22, $p = .07, R^2 = 8.67\%$), Source of journal/periodical (Wald = 1.23, $p = .027, R^2 = 1.72\%$), and Source of website (Wald = 2.50, $p = .11, R^2 = 4.47\%$) did not. The R^2 values revealed that the errors associated with Publisher information had the most variance explained by the two-cluster model.

Stage 5 Findings
Correlation analysis. A series (i.e., $n = 4$) of nonparametric (i.e., Spearman) correlations, after applying the Bonferroni adjustment to control for the inflation of Type I error, revealed that the number of reference list errors was statistically significantly and positively related to the number of citation errors ($r_{ij} = .39, p < .001$), suggesting a moderate-to-large relationship (Cohen, 1988). Also, the number of reference list errors was statistically significantly and positively related to the length of manuscript ($r_{ij} = .39, p < .001$), suggesting a moderate relationship (Cohen, 1988). However, no statistically significantly relationship emerged between the number of reference list errors and the following variables: gender of the lead author ($r_{ij} = .06, p = .50$), number of authors ($r_{ij} = .03, p = .73$), and size of institution of the lead author ($r_{ij} = .02, p = .82$).

Independent samples t test. An independent samples t test revealed that manuscripts that were not accepted by the editor ($M = 13.70, SD = 7.43$)—that is, they were either rejected or received a revise-and-resubmit decision, contained statistically significantly ($t(11.22) = 2.37, p = .037$) more reference list errors than did manuscripts that were accepted ($M = 9.44, SD = 4.95$). The effect size associated with this difference was 0.83. Using Cohen’s (1988) criteria, this value suggests a large effect size.

Canonical correlation analysis. A canonical correlation analysis was conducted to examine the multivariate relationship between the reference list error themes and selected demographic variables (i.e., gender of the lead author, number of authors, length of manuscript, and size of institution of the lead author). Because 14 reference list error themes were correlated with four manuscript variables, four canonical functions were generated.

The canonical analysis revealed that the four canonical correlations combined were statistically significant ($p < .002; R_{c1} = .75; \text{Wilk's Lambda} = .16$). However, when the first canonical root was excluded, the remaining three roots were not statistically significant ($p = .10; R_{c2} = .67; \text{Wilk's Lambda} = .37$). Similarly, when the first two canonical roots were excluded, the remaining two roots were not statistically significant ($p = .71; R_{c3} = .44; \text{Wilk's Lambda} = .68$), and when the first three canonical roots were excluded, the remaining root was not statistically significant ($p = .62; R_{c4} = .40; \text{Wilk's Lambda} = .84$). Together, these results suggested that the first canonical function was statistically significant and practically significant (Canonical $R^2 = .56$; Cohen, 1988), but the remaining roots were not statistically significant. Thus, only the first canonical function was interpreted. Data (i.e., standardized function coefficients and structure coefficients) pertaining to the first canonical root are presented in Table 4. Using a cutoff correlation of 0.3 (Lambert & Durand, 1975), the standardized canonical function coefficients revealed that the following four reference list error themes made important contributions: Publisher information, Source of authored book, Source of dissertation/thesis, and Source of edited book, with Publisher information making the largest contribution. With respect to the manuscript variable set, number of authors and length of manuscript made noteworthy contributions, with length of manuscript making by far the greatest contribution.
structure coefficients revealed that four reference list error variables made noteworthy contributions: Names of authors, Publisher information, Source of dissertation/thesis, and Source of edited book. As previously, Publisher information made the largest contribution. The square of the structure coefficient indicated that Publisher information explained 62.4% of the variance.

With regard to the manuscript variable cluster, again, number of authors and length of manuscript made noteworthy contributions, with length of manuscript making the greatest contribution for the second time, explaining 84.6% of the variance. Comparing the standardized and structure coefficients suggested multicollinearity with Names of authors because the structured coefficient associated with this variable was large, whereas the corresponding standardized coefficient was relatively small (Onwuegbuzie & Daniel, 2003). Further, Source of authored book represented a suppressor variable because the standardized coefficient associated with this variable was large, whereas the corresponding structured coefficient was relatively small. Suppressor variables are variables that assist in the prediction of dependent variables due to their correlation with other independent variables (Tabachnick & Fidell, 2006). Thus, the multivariate relationship between the reference list error themes and the manuscript variables was mainly characterized by the relationship between reference list errors associated with Publisher information, Source of dissertation/thesis, and Source of edited book on the one side, and Number of authors and Length of manuscript on the other side.

![Figure 2](image_url)

Figure 2. Stage 4 Findings: Profiles of the manuscripts with respect to the reference list error themes.
Table 4

Stage 5: Canonical Solution for First Function: Relationship Between the Reference List Error Themes and the Four Demographic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Coefficient</th>
<th>Structure Coefficient</th>
<th>Structure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation Error Theme:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General errors</td>
<td>.08</td>
<td>.13</td>
<td>1.7</td>
</tr>
<tr>
<td>Names of authors</td>
<td>.16</td>
<td>.32*</td>
<td>10.2</td>
</tr>
<tr>
<td>Publication year/date</td>
<td>.14</td>
<td>.21</td>
<td>4.4</td>
</tr>
<tr>
<td>Publisher information</td>
<td>.60*</td>
<td>.79*</td>
<td>62.4</td>
</tr>
<tr>
<td>Reference heading</td>
<td>-.08</td>
<td>.12</td>
<td>1.4</td>
</tr>
<tr>
<td>Source of authored book</td>
<td>-.46*</td>
<td>-.08</td>
<td>0.6</td>
</tr>
<tr>
<td>Source of dissertation/thesis</td>
<td>.33*</td>
<td>.35*</td>
<td>12.3</td>
</tr>
<tr>
<td>Source of edited book</td>
<td>.50*</td>
<td>.59*</td>
<td>34.8</td>
</tr>
<tr>
<td>Source of government document</td>
<td>.03</td>
<td>-.07</td>
<td>0.5</td>
</tr>
<tr>
<td>Source of journal/periodical</td>
<td>-.05</td>
<td>.08</td>
<td>0.6</td>
</tr>
<tr>
<td>Source of newspaper article</td>
<td>-.01</td>
<td>.11</td>
<td>1.2</td>
</tr>
<tr>
<td>Source of paper presentation</td>
<td>-.23</td>
<td>-.10</td>
<td>1.0</td>
</tr>
<tr>
<td>Source of website</td>
<td>-.04</td>
<td>.09</td>
<td>0.8</td>
</tr>
<tr>
<td>Title of work</td>
<td>-.06</td>
<td>.24</td>
<td>5.8</td>
</tr>
<tr>
<td>Demographic Variable:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender of the lead author</td>
<td>.13</td>
<td>-.04</td>
<td>0.2</td>
</tr>
<tr>
<td>Number of authors</td>
<td>.38*</td>
<td>.43*</td>
<td>18.5</td>
</tr>
<tr>
<td>Length of manuscript</td>
<td>.89*</td>
<td>.92*</td>
<td>84.6</td>
</tr>
<tr>
<td>Size of institution of the lead author</td>
<td>.10</td>
<td>.21</td>
<td>4.4</td>
</tr>
</tbody>
</table>

*Coefficients with effect sizes larger than 0.3 (Lambert & Durand, 1975).
Discussion of Findings

Onwuegbuzie and Hwang’s (2012) findings provided compelling evidence that some of the reference list errors are among the most prevalent APA errors. Indeed, as surmised by these authors, the prevalence of the reference list error stemming from serial (issue) numbers being presented when the page numbers in each volume are continuous (77.9%) was 1.35 times higher than was the prevalence rate of the most common APA error involving the body of manuscripts identified by Onwuegbuzie and Combs (2009)—namely, pertaining to the incorrect use of numbers (57.3%). Further, two of the reference list error themes, Sources of journal/periodical (92.4%) and Names of authors (88.5%), were significantly more prevalent than was the highest APA error theme labeled by Onwuegbuzie and Combs (2009) as Grammar (i.e., 65.5%).

Moreover, the fact that authors who submit manuscripts to *RITS* committed more than 12 unique reference list errors per manuscript, on average, and that 84% of authors committed more than five unique reference list errors, is disturbing. However, what is even more disturbing is that these reference list error rates likely represent a lower bound when considering that these manuscripts were submitted before the writers of the sixth edition of APA mandated that authors include digital object identifiers (DOIs) of articles whenever they are available (cf. section 6.31). According to the writers of the sixth edition of the *Publication Manual*, DOI numbers represent unique numbers that are assigned by the publisher for electronic referencing of published journal articles and other documents. As stipulated by the writers of the sixth edition of APA, in a reference list, authors should place available DOI numbers at the end of the reference, one space after the period. Thus, under the sixth edition of APA, failure to include available DOI numbers not only represents a citation error, but also a reference list error. Thus, the requirement of DOI numbers likely will increase the reference list error rate to even higher levels.

The high reference list error rates coupled with the fact that manuscripts that contain a high number of reference list errors are significantly more likely to be rejected, demonstrate the importance of developing strategies for drastically reducing these trends and eliminating what clearly is a *culture of reference list errors*. In fact, apart from the potential ethical implications of committing reference list errors, such errors make it more difficult for copyeditors and typesetters to complete their work, thereby possibly delaying publication of the article or even the issue that contains the article—especially when these errors involve missing information that only the author(s) can supply. In fact, as part of numerous editorial teams, we have experienced that a reference list that does not conform closely to APA can take several hours to correct.

Consequently, as admonished by Onwuegbuzie, Frels, et al. (2010), a unified effort is needed to end this cycle of reference list errors and to create a culture of reference lists that are minimally error free that involves teachers at primary, secondary, and tertiary levels. At the college level, instructors can make a difference by formally evaluating reference lists (i.e., assigning points to the quality and accuracy of reference lists). For instructors with heavy teaching loads (e.g., many classes, large classes), at the very least, they can evaluate a (random) sample of reference list entries, or perhaps, they can train teaching assistants (where available) to perform this duty. For example, during the *RITS* internal review process, the reviewers stop reviewing the reference list and internally reject the manuscript (asking the author to revise and to resubmit the reference list before it can be sent out for external review) as soon as one missing DOI number is identified. Other key persons who can play an important role in promoting a culture of error-free reference lists are mentors, advisors, and thesis/dissertation committee members and chairs/supervisors, journal editors, publishers, and writers of future editions of the *Publication Manual*.

The finding of no gender differences in the number of reference list errors and the incidence of reference list error themes is an encouraging finding, unlike the recent finding of Onwuegbuzie, Frels, et al. (2010) that female lead authors or sole authors are more likely than are males to commit citation errors. Similarly, the finding of no relationship between the size of the institution and the incidence of reference list error themes is an encouraging finding. However, although the positive relationship between the number of pages of a manuscript and the incidence of reference list error themes is not surprising, the fact that manuscripts that involve more co-authors also tend to exhibit more reference list error themes is disturbing, and suggests—as did the positive relationship between the number of authors and the number of citation errors documented by Onwuegbuzie, Frels, et al. (2010) and Onwuegbuzie et al. (2011)—that the bystander effect likely prevails (Darley & Latané, 1968; Hudson & Bruckman, 2004; Levine & Thompson, 2004). As noted by Onwuegbuzie, Frels, et al. (2010):

the presence of multiple co-authors encourages inaction in checking the in-text citations and the reference list carefully. This inaction might stem from pluralistic
As such, we recommend that for articles that involve multiple authors, all authors examine the reference list carefully to avoid promoting the bystander effect by relying solely on the lead author or a designated author to perform this task.

It is important to note that oftentimes, although submissions to journals should conform to APA style guidelines, most journals ascribe to in house rules in the presentation of articles. For example, this editorial and articles of RITS are presented in two columns and justified both to the left and the right margins. Another recently implemented in house rule for RITS is to keep DOI numbers intact without breaking lines so that a DOI can be copy-and-pasted accurately. In fact, many journals present the DOI on the first page of an article and capitalize the acronym as we have throughout this editorial in all upper-case (capital) letters even though in reference lists, correct APA style (2010) guidelines are to present the acronym in lower-case letters followed by a colon and no space before the numerals (e.g., http://www.akspublication.com/ijmu:15327906mbr01_02_10). Onwuegbuzie, Frels, et al. (2010) provided a number of recommendations for reducing errors relating to citation errors for (a) authors; (b) college-level instructors, mentors, advisors, and thesis/dissertation committee members and chairs/supervisors; (c) copyeditors, typesetters, production editor/publishers; and (d) writers of future editions of the Publication Manual. Many of these recommendations also are pertinent for reducing reference list errors. Thus, we refer readers to these recommendations (see the open access article at: http://msera.org/download/RITS_17_2_Citations.pdf).

In particular, recommendations for authors provided by Onwuegbuzie, Frels, et al. (2010) that relate to reference lists include printing-out and proof-reading the reference lists several times for incomplete or inaccurate references; using the spell check function; using a reference management software package (e.g., EndNote, RefMan, and ProCite) combined with a manual check to account for the fact that these packages are not 100% error free; and ensuring that all authors representing articles that involve multiple authors to check the manuscript meticulously for citation errors.

Another useful recommendation is to use Table 1 and Table 2 presented in the current editorial as starting points by focusing on these most common types of reference list errors and reference list error themes, respectively. In Appendix A, we provide a reference list that is presented in traditional double-spaced format and in one column; it has been modified from Frels and Onwuegbuzie (2012) in such a way that it contains numerous reference list errors. Appendix B provides a corrected version of the reference list that incorporates the tracked changes and comments for addressing the various reference list errors. Appendix C provides a corrected version of the reference list with no tracked changes or comments. In Appendix D, we provide a useful tool for helping authors avoid citation errors. In Appendix E, we provide step-by-step guidelines for locating and presenting DOI numbers of journal articles in the reference list. Our goal in writing this editorial was to provide compelling evidence of the importance of checking reference lists with the utmost care. Also, we hope that the tools and strategies presented in this editorial or other available tools help authors to prevent reference list errors and, thus, “write with discipline” (Onwuegbuzie & Combs, 2009, p. 116).

References

doi:10.1207/s15327906mbr01_02_10

Onwuegbuzie, A. J., & Hwang, E. (2012). Reference list errors in manuscripts submitted to a journal for review for publication. Unpublished manuscript, Sam Houston State University, Huntsville, TX.

Appendix A

A Modified Excerpt from Frels and Onwuegbuzie (2012) with Numerous Reference List Errors Inserted

References

Lather, P. (1986). Issues of validity in openly ideological research: Between a rock and a soft place. Interchange, 17, 63-84. doi:10.1007/BF01807017

Appendix B

A Modified Excerpt from Frels and Onwuegbuzie (2012) with the Numerous Reference List Errors Corrected with Tracked Changes and Comments

References

EDITORIAL: EVIDENCE-BASED GUIDELINES FOR AVOIDING REFERENCE LIST ERRORS IN MANUSCRIPTS SUBMITTED TO JOURNALS FOR REVIEW FOR PUBLICATION

Cooper, J. E., Brandon, P. R., & Lindberg, M. A. (1998). Evaluators' use of peer debriefing:
Three impressionist tales. *Qualitative Inquiry, 4*, 265-279.
doi:10.1177/107780049800400207

EDITORIAL: EVIDENCE-BASED GUIDELINES FOR AVOIDING REFERENCE LIST ERRORS IN MANUSCRIPTS SUBMITTED TO JOURNALS FOR REVIEW FOR PUBLICATION

Appendix C

A Modified Excerpt from Frels and Onwuegbuzie (2012) with the Numerous Reference List Errors Corrected with No Tracked Changes or Comments

References

Appendix D

A Tool for Helping Authors Avoid Reference List Errors: Citationmachine.net
(http://www.citationmachine.net/index2.php?reqstyleid=2&newstyle=2&stylebox=2)

You can use Citationmachine.net either to generate APA- or MLA-compliant reference list entries.

As an example, if you wanted to present an APA-compliant journal article in the reference list using Citationmachine.net, click on the journal tab.
EDITORIAL: EVIDENCE-BASED GUIDELINES FOR AVOIDING REFERENCE LIST ERRORS IN MANUSCRIPTS SUBMITTED TO JOURNALS FOR REVIEW FOR PUBLICATION

Click on the “+” tab once to add a second author, twice to add a third author, and so forth.

Next, type in each element of the journal article into the appropriate blank boxes on the left hand side.
For example, you would click the “+” tab twice to allow the names of the three authors in the following reference to be presented:

EDITORIAL: EVIDENCE-BASED GUIDELINES FOR AVOIDING REFERENCE LIST ERRORS IN MANUSCRIPTS SUBMITTED TO JOURNALS FOR REVIEW FOR PUBLICATION

All the information for the Frels et al. (2010) reference has been entered.

To convert all the information into an APA-compliant reference list entry, click on the “Make Citation” tab.
The reference list entry can be converted to plain text or to a .pdf file.

Clicking on the “Start a New Journal Article Citation” tab will allow the author to repeat the whole process for the next reference list item.

Here, the APA-compliant reference list entry is provided, which, after using the scroll down tab to ensure that all the reference is highlighted, then can be cut-and-pasted onto the reference list.

Citation Machine will not remember this bibliographic and In-Text citations. Please copy and paste them into your work file.

The in-text citation corresponding to the reference also is provided, but this in-text citation is not reliable (as indicated by the statement “There are usually many variations of in-text citations. Consult the Style Guide [Publication Manual] for clarification”). Indeed, the comma between the last two authors (i.e., Onwuegbuzie and Slate) has been incorrectly omitted here. Thus, we recommend that authors use the Citationmachine.net only to generate reference list entries (and not in-text citations).

Click on the “Return to Form to Correct Mistakes” tab to identify any errors and to correct them.
Step-by-Step Instructions for Locating and Presenting DOI Numbers of Journal Articles in the Reference List

You would compile available DOI numbers as follows:

1. The first step is to access the following link: http://www.crossref.org/guestquery/

2. Next, locate the first journal article in your reference list. Suppose that your first reference is as follows:

3. You would then scroll down to the bottom of the DOI website (http://www.crossref.org/guestquery/) and locate the empty rectangular box that is directly below the following text:

 Automatic parsing of a formatted reference

 Paste your reference here. DOIs for any items that find a match in our system will be returned. NOTE: currently this form only supports ONE reference at a time.

4. Next, cut-and-paste the complete reference into this rectangular box:

5. After you have entered the lead author’s last name and title of the article, then depress the “search” tab.
6. As can be seen from the second screenshot above, you will then be provided with one or more doi numbers, if one exists. (If a DOI number does not exist and you have double-checked the spelling of the lead author’s last name and article title, then you move on to the next journal article on your reference list.)

Also, in the above screenshot, for the Greenwald et al. (1996) article, the two DOI numbers given are:

doi:10.3102/00346543066003361

When you have two DOI numbers, you select one of them (e.g., the first doi number).

7. Next, double check that the volume number, issue number, beginning page number, and publication year all match those in your reference list. If so—as is the case in the above screenshot—you then cut-and-paste the doi number into your reference list such that it appends the reference, beginning one space after the end of the reference. In addition, remember that as written, oftentimes you will see in print “DOI” in all capital letters; yet, in

8. Next, make the hyperlink inactive by deleting any underline, bold face text, and color (the color should be black, the same as the remainder of your manuscript. You can use the “Font”/“Font color”/”Automatic” combination of options to change the color. Or, even more efficiently, you right-click on the DOI number and select “Remove Hyperlink” – as in the screenshot below:

By removing the hyperlink, you will end up with the following final reference:

9. You then move on to the next journal article on your reference list and repeat Steps 3-8 until the available DOI numbers for all articles have been located and inserted into the reference list.